
ISGTC: an alternative to ˜bofh/bin

David Schweikert <dws@ee.ethz.ch>

presented at the SANE 2004 conference on the 2004-10-01

1 Introduction
Scripts let us do system administration in an efficient and reliable way. These scripts
are so useful to us because they are powerful. But like rm -rf, which is undeni-
ably very useful, they are also very dangerous because of that power. One mistake
and a disaster might happen.

That’s why it is important for this kind of tools to be dependable. Not only do
they need to work reliably, they also must have an understandable and consistent
user interface to minimize the risk of human mistakes. This can be achieved by
having a standard on how administration scripts are developed and how they should
behave.

At the ISG.EE, a system administration group at the ETH Zurich, we never
found the time and courage to write such a standard and decide that all our adminis-
tration scripts should follow it. There were many choices to be made and having to
select what is best for us among many possible variants, blocked us from achieving
such a standardization.

Finally, in the year 2001, we came up with the IT Support Group Tool Chest (IS-
GTC). The ISGTC contains 37 rules that must be followed when writing a new tool
and contains more than 100 administration scripts that follow those rules. All the
scripts are released under the GNU General Public License (GPL). I will describe
some of them in section 4.

2 Guiding principles
As system administrators, we take a different approach to computers than other
users. We try to understand why computers behave the way they do, write scripts
to automate repetitive tasks, do optimizations so that the services are as reliable and
useful to the users as possible, . . . While working as system administrator, we gather
experience on how administration should be done.

At the ISG.EE we did formulate some basic principles of system administration,
that are based on our experience. This section is a short summary of these principles,

1

which form also the basis for the administration script policy that I will describe
later on.

2.1 Documentation
Documentation is one of the most often neglected tasks of a system administrator.
It is very challenging to keep up with user needs and at the same time to document
the current state of the managed system.

Documentation is however also, in my opinion, the most basic requirement for
reliable and efficient system administration. Only with proper documentation I can
make sure somebody else can understand how to run the system. Even I will even-
tually forget all the details about something that I setup today.

2.2 Reproducibility
We control the systems we manage, and not the other way around. They work
the way they do as a result of controlled administration and not of as a result of
“random” interactive changes. We can re-install from scratch any of our machines
exactly as they were before.

Besides greater reliability, reproducible system administration also means that
we work more efficiently, since we can rapidly repeat tasks in case of hardware
upgrades or if we want to do a similar setup somewhere else.

Poor reproducibility is the main main drawback of interactive configuration
tools. If I click-enable an entry in some context sensitive menu, I might forget
to do the same the next time around.

If a system is properly documented, its setup is also reproducible. The doc-
umentation just includes the necessary human steps for replaying what was done
before.

2.3 Versioning and Accountability
In order to guarantee that useful information isn’t lost, we keep the full history of
the documentation and configuration files through a version control system such as
Subversion. We can retrieve an old version if for example a mistake was done and
we can look at the history of the system documentation to see what was changed to
the system. When many people work together it allows them to keep up with each
other.

Version control also allows all the administrators in the group to work in parallel
on the same set of files and we can track who did what change to what file. This
is very useful to aid in debugging when something doesn’t work anymore or is not
clear to somebody: you can find out who did the change and ask him/her directly.

2

2.4 Automation
Doing the same thing again and again is not only inefficient, but also boring and thus
error-prone. If there is a pattern of actions, I can automate them with a script. This
will make the required work faster and more reliable since those repetitive tasks will
always be done the same way.

If some procedure is automated, I also need less to document, since I only have
to describe how to start the script instead of every single step.

2.5 Redundancy avoidance
One of the worst enemies of a system administrator is redundancy. As soon as the
same configuration information lives in two files, there is a potential problem of
inconsistency. We might make a change in one file and forget to update the other.
Therefore we try to avoid redundancy whenever possible. If the same information
needs to be in different places, then we make sure that it is clear which one is the
authoritative source and possibly automatically generate the others.

3 The ISGTC policy
I will now explain the most important rules in our administration scripts policy. The
full text of the policy is also available on the ISGTC home-page (see the address at
end of this article).

3.1 The isgtc tree and relocatability
By default the ISGTC scripts and configuration files are stored in/usr/isgtc
with the following sub-directories:

bin tool binaries (bindir)

lib libraries (libdir)

etc configuration files (sysconfdir)

share read-only data (datadir)

man man-pages (mandir)

var read/write data (localstatedir)

src sources for the tools and libraries (srcdir)

While the ISGTC has a standard installation location, every script is relocatable.
ISGTC paths such as /usr/isgtc/etc are not written explicitly into the scripts.
Instead special magic variables such as ISGTC_MAGIC_BINDIR are used. The

3

ISGTC could, for example, be configured to have binaries in /opt/isgtc and
configuration files in /etc/opt/isgtc.

3.2 Sources and version control
The sources of the scripts are located in srcdir. Every script or library has a di-
rectory, which contains the source code and related files. We call these directories
modules.

With the exception of sysconfdir, which contains the configuration, and local-
statedir, which contains data saved by the scripts, the other ISGTC directories are
populated exclusively by installing modules from srcdir using the installation script
isgtc install.

Because the files in other directories are derived from it, srcdir is the only direc-
tory under version control.

3.3 Ownership
Every module has a defined owner, who is responsible for maintaining it.

There is also an ISGTC owner, who is responsible for keeping the ISGTC as
a whole in good shape. He/she ensures, that the ISGTC doesn’t contain scripts
with similar functionality or obsolete tools and also makes sure that the policy is
respected.

3.4 META file and installation of modules
isgtc install reads a description of the modules and what files to install from
a file called META inside the module directory in srcdir. It configures and installs
binaries, libraries, man-pages, and data files.

Listing 1 shows as an example the META file of the diskadm module.
The *** install *** section specifies that src/diskadm/diskadm

should be installed as /usr/isgtc/bin/diskadm. In addition, the man-pages
written in POD, the Perl inline documentation format, will be extracted and put in
/usr/isgtc/man.

The META file also contains information about the owner of the module, what
version of the policy document was used, on what platform it runs (either unix
or win32), what kind of module it is (tool or library), and what other modules it
depends on.

You can think of source modules as sort of packages like RPM, where the META
file is the description of the package.

3.5 User documentation
Every module must have user documentation in POD format, which can be con-
verted to man-pages and a number of other formats like HTML. If possible, the

4

Listing 1: /usr/isgtc/src/diskadm/META
policy = 1.2
name = diskadm
type = tool
platform = unix
description = Disk administration tool
pod = diskadm, diskadm-design.pod
owner = dws

*** install ***

perm/owner source dest
755 root:root diskadm ISGTC/bin

*** depends ***

ISG_Util
ISG_DisksConfig
ISG_Solaris_DiskUtils

documentation is kept in the script itself so that it is easier to keep the documenta-
tion and code synchronized. The isgtc_install tool will verify that documen-
tation is available and that it contains mandatory sections, such as SYNOPSIS and
COPYRIGHT.

3.6 Options
The GNU syntax for long-options is supported by every tool and the following op-
tions are mandatory:

--help, -h Help on usage of the tool.

--version Version information.

--noaction, -n Do not do any changes to the system, just show what would
be done. If not implemented, the script must die with an error
message.

--verbose, -v Be more verbose about what is done. This option may be
ignored.

Consistent options are important to ensure predictable behavior of scripts. Imag-
ine the account removal script doesn’t follow this rule and uses -n to activate the
no-questions-asked mode.

5

3.7 Site independence
All scripts in the ISGTC must be site independent. This means that they must not
contain installation-specific information such as hostnames or paths. In that way,
we can make sure that configuration information really is in sysconfdir and that we
can reuse the tool in other setups. Site-independence also means that you can use
them too.

3.8 Configuration files syntax
Configuration files are placed in sysconfdir (by default /usr/isgtc/etc) and
are called either just toolname.conf or alternatively toolname/xxy.conf
if more than one file is necessary.

It should be possible to share sysconfdir among different hosts. That’s why often
the configuration files are called toolname/HOSTNAME.conf, so that different
configuration files for different hosts can be specified.

Configuration files are text based and use a very simple and human-readable
syntax. The META file shown in listing 1 is an example of the syntax used for the
configuration of ISGTC scripts.

3.9 Administrator profiles
In our group 13 persons have the root password. In order to trace who did what
change to the system, such as creating a new user, there is a login utility called
isgtc_login, that is started in the root profile. Every time an administrator logs
in as root, he identifies himself by typing his username. This causes environment
variables to be set, so that ISGTC scripts can log who did what.

As an added bonus, each administrator can configure its root environment, in-
cluding shell and editor. I am really awkward when I type in a tcsh of a colleague
with vi-like key bindings, but on the other hand he works better with it, so it is really
nice that we can have it both ways.

3.10 Programming language and style
ISGTC tools are written in one common language, which is in our case Perl. Hav-
ing only one programming language makes understanding the code for all the people
involved in writing and maintaining the scripts easier. It also makes code sharing be-
tween modules simple. Of course, if for some reason another language is required,
then that language is used.

We did also define how the code should look like, so that it is easier to read
and consistent throughout. We did choose the style as defined in the perlstyle
man-page.

6

3.11 Testing
The isgtc_install script can automatically run test scripts before it installs a
given module. With this you can make sure that for example a configuration parsing
module always parses all test cases correctly. If there is a test script and it fails, the
module isn’t installed. This can be very useful when extending a library: you can
guarantee that your changes are not going to affect the existing tools based on it.
The quality of the whole ISGTC is improved by such automatic tests.

4 Some ISGTC tools
In this paper I mainly wanted to show you the benefits of having a policy on ad-
ministration scripts and maybe convince you to take the ISGTC policy as a basis to
write your own.

Something else that might be useful to you are the scripts themselves. We have
written more than 100 scripts over the past 4 years and use them on a daily basis to
solve all kinds of system administration tasks. All of these scripts are free software
released under the GNU General Public License and can be downloaded from the
ISGTC home-page.

Although most tools are configurable and are made generic, they might make
some assumptions about the environment they run in. For example, we use the
NIS+ directory service everywhere, so many tools assume that. Therefore some
tools might just be perfect as-is for you, some might require some modifications,
and some might be only an inspiration for a new tool of yours.

In this section I will present a selection of ISGTC tools, which I find particularly
interesting. Have a look at the ISGTC home-page for the full list.

4.1 accountmgr
accountmgr is a tool to create accounts using a configuration file that specifies the
needed information. It takes care of creating the passwd entry (currently in NIS+),
creates the home-directory, sets file-system quotas, and creates email aliases.

The biggest installation we manage has currently 3068 accounts. In order to
have a grasp on all these accounts, we need to know more than the first and last
name of the user.

Every account that we create belongs to a specific group or customer, which we
call lab, and is classified by type: syst for system accounts, stud for students,
staff for employees, proj for projects and group accounts, guest, and ueb for
anonymous accounts used for exercises. According to the type, additional informa-
tion is required. For proj accounts you must, for example, define an expiry date,
so that you are forced to actively renew it, and a contact address, so that the owner
of the account can be reached.

7

Listing 2: Gecos field with additional information
1 2 3 4 5 6 7

Example,proj,nari,2004/04/26,*,2005/12/31, Joe User <joe@ethz.ch>

all types:
1: title 2: type 3: lab 4: creation date 5: quota

proj-specific:
6: expiry date 7: contact

The authoritative source of information for accounts is the passwd table and we
use the gecos field to preserve all the specified information. Listing 2 shows an
example gecos field for a project account.

4.2 dbaccmgr
dbaccmgr is a tool to create database accounts. The authoritative information
about the accounts is stored in the configuration of dbaccmgr under sysconfdir.
dbaccmgr reads what should be present on the system and creates any missing
accounts. That way we have a documentation about the creation date, the adminis-
trator that created it, for what project it is used and who is responsible for it.

When I want to create a new database, I do the following:

1. Add a line for the database in my CVS copy of
etc/dbaccmgr/servername.conf

2. CVS-commit the change

3. CVS-update /usr/isgtc/etc/dbaccmgr/servername.conf

4. Run dbaccmgr

This might seem a lengthy process but it actually takes less than 5 minutes. The
documentation advantage is well worth the effort.

4.3 homemover
With homemover you can move users’ homes from one directory to another local
or remote directory. Moving a home-directory is pretty complex, because lots of
small things need to be fixed after the move has been made, so that the whole system
remains in a consistent state.

homemover solves the problem that many things can go wrong when moving
homes, by first analyzing what there is to do, making a plan of what needs to be
done and asking the user if it is OK to proceed. This plan is afterward used not only
for deciding what to do, but also to bring back the system to a sane state in case of
an error, by following the plan backwards.

8

Listing 3: homemover in action
root(ds)@tardis# homemover tardis:/usr/tardis/home-a/dws \
tardis:/usr/tardis/home-b/dws

Due actions:

1. HOMELINK_RM /home/dws
2. NISAUTO_RM /home/dws
3. LOCAL_CHMOD /usr/tardis/home-a/dws 0
4. LOCAL_COPY /usr/tardis/home-a/dws /usr/tardis/home-b/dws
5. LOCAL_CHMOD /usr/tardis/home-b/dws 755
6. LOCAL_VERIFY /usr/tardis/home-a/dws /usr/tardis/home-b/dws
7. HOMELINK_ADD /home/dws /usr/tardis/home-b/dws
8. NISAUTO_ADD /home/dws tardis:/usr/tardis/home-b/dws
9. LOCAL_REMOVE /usr/tardis/home-a/dws

10. QUOTACHECK /usr/tardis/home-a
11. QUOTACHECK /usr/tardis/home-b

Proceed? [no]

For example, the size of the old and new home-directory is checked to be the
same at the end. If it isn’t, everything is put back as it was before, so that the
problem can be safely analyzed and a retrial can be done later.

Listing 3 shows homemover asking for confirmation. HOMELINK_ADD/RM is
for adding or removing sym-links in /home and NISAUTO_ADD/RM is for adding
or removing automounter entries in NIS+ (we use both: sym-links on the servers
and automounted homes on the clients).

4.4 isgsnap
Solaris 8 04/01 introduced file-system snapshots. It was finally possible to make re-
liable backups without bringing the system down to single user mode. That’s really
great, but there is a catch: creating snapshots is pretty complicated and difficult to
automate for doing backups.

isgsnap is a script that takes care of all the snapshot creation details on So-
laris:

• Suspends special processes that might be locking the file-system.

• Automatically chooses a disk to use as backing store for saving all changes to
the disk since the snapshot was created.

• Creates a file with the PIDs of the processes using the snapshot and removes
the snapshot only if no one else is using it, so that it is possible, for example,
to do a backup dump and at the same time create a mirror of the disk.

9

Listing 4: Example /etc/disks.conf
*** partitions ***

MOUNT-POINT SIZE TYPE(OPTIONS)

+ c0t0d0

/ 4000 ufs(logging)
swap 4000 swap(nomount)
/scratch free ufs(logging)

*** permissions ***

/scratch 1777 root:root

*** exports ***

/scratch nfs(nosuid,rw=login-01:nova)

4.5 diskadm
Like I said, systems should be documented and it would be nice to have account-
ability to find out who did what, when. What about the disks configuration such as
partition tables, mount points, mount options, and the exported shares?

diskadm’s job is to configure disks according to a configuration file called
/etc/disks.conf. The configuration file specifies how each disk should be
configured. diskadm compares this target state to the current state and builds up a
list of actions required to bring the two in sync. We tried to put all the complex code
in this planning phase, which will be seen by the user when asking for confirmation,
so that it is very safe to use.

Listing 4 shows an example configuration and listing 5 shows diskadm asking
for confirmation to proceed according to the displayed plan of action.

Besides documenting and making it easier to configure disks, diskadm is also
useful with disk-less clients. You can have hundreds of machines, with disks that
need to be partitioned according to your wishes. For such situations there is a
--batch option that disables asking for confirmation.

4.6 mirror root
RAID-1 mirroring of the root disk is really a good idea: if the root disk fails you
will spare your users a long down-time. That’s the theory anyway. What if it is not
an hardware failure but a human mistake? Let’s say you update your system and
some library breaks so badly, that the system crashes and you can’t boot it anymore.
Your RAID-1 mirror is not going to help you because all the changes were dutifully
replicated to the other disk.

10

Listing 5: Example diskadm session
diskadm
Due actions:

1. PARTITION c0t0d0
from:
0: |000000000000000 | 0M - 10000M
1: | 111111111111111111111111111111111111| 10000M - 34730M
2: |22| 0M - 34730M

to:
0: |000000000000000 | 0M - 10000M
1: | 111111111111111 | 10000M - 20000M
2: |22| 0M - 34730M
3: | 3333333333333333333333| 20000M - 34730M

2. FORMAT c0t0d0s1

3. FORMAT c0t0d0s3

4. FSTAB_CHANGE /dev/dsk/c0t0d0s1
- /dev/dsk/c0t0d0s1 /dev/rdsk/c0t0d0s1 /scratch ufs 2 yes -
+ /dev/dsk/c0t0d0s1 - - swap - no -

5. FSTAB_ADD /dev/dsk/c0t0d0s3
+ /dev/dsk/c0t0d0s3 /dev/rdsk/c0t0d0s3 /scratch ufs 2 yes -

Proceed? [no]

mirror_root is a disk mirroring tool, which copies one disk to another, in-
cluding the partition table. We run it every week on early Monday morning, so that
not only we can use it to recover from hardware failures, but we can also use it to
recover from fatal mistakes that we might do during the week.

4.7 patchfetch2
Currently we install on our Solaris machines 274 patches. The process of selecting,
testing and installing requires a lot of time, also because of this huge number. We
did write patchfetch2 to help us manage them efficiently.

The most interesting aspect of the script is its user interface: the selection of the
patches is done with an editor. patchfetch2 produces a list of patches that are
appropriate for the packages that you have installed on your system and starts an
editor, where you can mark the patches that you want to download.

Every patch has a lot of information stored in a README file, that might be
interesting to read in order to decide if you want to install it. Therefore we use a
folding editor, that can collapse many lines into one, just showing the first. The patch
list contains one line per patch, with the README collapsed under each patch.

11

4.8 tetre2
We manage about 300 Unix machines. If our name-server changes, we don’t want
to go and fix /etc/resolv.conf manually on every one of them.

tetre2 (Template Tree II) is our solution to this problem. All changes to the
system are grouped by functionality. For example, all changes that are required
in order to configure a Postfix client are put together in a single feature named
postfix_client-1.0-ds. You can think of features as a sort of specialized
packages for system changes. The features themselves can expose parameters: for
example, the mentioned Postfix client feature needs two parameters, the mail do-
main and the hostname of the mail server.

A central configuration file specifies which features have to be installed on
which machines. In the same file the features also are parametrized according to
the specific needs. We can configure a group of machines which uses a certain mail
server and another group that uses another. All the configuration steps are executed
by creating a cfengine file, that is then applied to each machine.

There is a lot more to Template Tree II than what I described here. You can find
more about it at: http://isg.ee.ethz.ch/tools/tetre2

4.9 Windows tools
The ISGTC is designed to be platform agnostic: it allows the integration of adminis-
tration scripts for all the platforms that we manage. All the scripts we use for system
administration on Windows are also integrated in the ISGTC. We install the Win-
dows scripts so that they are available through a Samba share. They are configured
with the UNC path of the share instead of /usr/isgtc/etc.

Of particular importance are usermgr and hostmgr, which create users and
windows hosts in the Active Directory according to a configuration file.

bootmgr is a boot script management tool, similar to System V init scripts,
with the difference that with a single configuration file we can specify what ma-
chines should run what scripts. We use it to install hotfixes, tighten permissions, fix
the PATH environment variable, . . .

Further information
On the ISGTC home-page you can find the ISGTC policy document and all our
scripts:

http://isg.ee.ethz.ch/tools/isgtc

12

