
The Joy of writing JavaScript Applications
How qooxdoo puts the fun into programming for the web

Tobias Oetiker

FISL12

I always wondered ... how is this done?

1 Introduction

The Browser: my application platform

• Netscapes original Plan: Application in the Browser.

• JavaScript graduated with Web 2.0

• Fast JS: Nitro, V8, Carakan, Tracemonkey, Cranckshaft.

• Even MS has joined in with IE9.

• Still inconsistancies but minor.

It is said that people at Netscape back in the nineties had the vision of escaping
the Microsoft dominance by enhancing their browser so that it could become a
platform of its own for running client side applications. It is also said that MS was
not thrilled by this thought.

Netscape is no more but the vision has become a reality. The Web 2.0 hype
sparked a slew of highly interactive web applications that used JavaScript snipets
on the browser to enhance the user experience.

Qooxdoo: applications in the browser

• Web 2.0 — a lot about the look and feel.

• Applications running in the browser.

• Back to client/server computing.

• Qooxdoo is for Js what Qt was for C++.

Qooxdoo features

• Turns JS into a grown-up OO language.

• No HTML or CSS knowledge required.

• Cross Browser: >= FF 1.5, Safari 3, Chrome, IE6, Opera8.

• Multilingual (gettext support).

• Full API Documentation.

• Widgetset for mobilde devices.

2

• Perfect Extensibility.

• LGPL, EPL

• Fun!

Qooxdoo is way more than yet another JavaScript widget collection. Apart from
a cool collection of widgets, it introduces fully object oriented programming to
the JavaScript world. Similar to the way OO got introduced in the Perl world, the
Qooxdoo folks designed a framework that provides all of the OO bits that were
left out of JavaScript’s initial design.

3

2 Hello World

Jump right in

• Try the Playground http://demo.qooxdoo.org/current/playground/

• Download Qooxdoo http://qooxdoo.org/download/

Some claim Qooxdoo has a steep learning curve since it does just publish some
JavaScript files you can link into your web page. While there are ways todo this all
the same, I think it is actually a good thing since Qooxdoo’s main objective is to
provide an environment for writing standalone, browser based applications. With
such a scope in mind, the developer should treat herself to a decent programming
environment.

Generating the first application

• Point your path to qooxdoo-1.4.1-sdk/tool/bin

• Change directory to your development space.

• Run create-application.py -name hello

• CD into the hello directory.

• Run generate.py source

• Point your browser to hello/source/index.html

Qooxdoo comes with many sensible defaults. One could argue, that a lot of Qoox-
doo’s appeal comes from the many defaults. Normally when I start to write a pro-
gram from scratch I am faced with way too many decisions at once. I often spend
considerable time mulling about seemingly trivial decisions instead of just start-
ing to program. Qooxdoo takes a lot of this “freedom” away by setting a standard
on how to write your application. Many of these defaults can be changed, but I
found that they are actually quite a good aproximation to my optimal program-
ming environment, so there is no immediate need to change them.

4

generated files

hello/generate.py
hello/config.json
hello/source/resource/hello/test.png
hello/source/translation/readme.txt
hello/source/class/hello/test/DemoTest.js
hello/source/class/hello/Application.js
hello/source/index.html
hello/Manifest.json
hello/readme.txt

source code: hello/source/class/hello/Application.js
1 /* Tell qooxdoo that we need the resources in hello/*
2 #asset(hello/*)
3 */
4 qx.Class.define("hello.Application",
5 {
6 extend : qx.application.Standalone,
7 members :
8 {
9 main : function()
10 {
11 // Call super class
12 this.base(arguments);
13 // Enable logging in debug variant
14 if (qx.core.Variant.isSet("qx.debug", "on"))
15 { // native logging capabilities
16 qx.log.appender.Native;
17 // additional cross-browser console.
18 // Press F7 to toggle visibility
19 qx.log.appender.Console;
20 }
21 // Create a button
22 var button1 = new qx.ui.form.Button(
23 "First Button", "hello/test.png");
24 // Document is the application root
25 var doc = this.getRoot();
26 // Add button to document at fixed coordinates
27 doc.add(button1, {left: 100, top: 50});
28 // Add an event listener
29 button1.addListener("execute", function(e) {
30 alert("Hello World!");
31 });
32 }
33 }
34 });

The original Qooxdoo hello world application, modified to fit the slide.

5

3 The Qooxdoo OO Features

Class definition

In its most basic form, a Qooxdoo class is very simple.
1 qx.Class.define(’my.first.Class’);

In reality you would use something like this
1 qx.Class.define("my.cool.Class", {
2 // declare constructor, members, ...
3 });

A regular class can then be instantiated
1 var myClass = new my.cool.Class;

Class inheritance

The map contains the meat of the class.
1 qx.Class.define("my.cool.Class",
2 {
3 extend : my.great.SuperClass,
4 construct : function() { ... },
5 destruct : function() { ... }
6 });

Embrace and extend.

Instance Members

Instance members reside in the members map.
1 qx.Class.define("my.cool.Class", {
2 members: {
3 foo : VALUE,
4 bar : function() { ... }
5 }
6 });

Use new to create an instance.
1 var myClass1 = new my.cool.Class;
2 myClass1.foo = 3.141;
3 myClass1.bar();

6

Calling the Superclass
1 qx.Class.define("my.cool.Class",
2 {
3 extend : my.great.SuperClass,
4 construct : function(x) {
5 this.base(arguments, x); // superclass constructor
6 }
7 members : {
8 foo : function(x) {
9 this.base(arguments, x);
10 }
11 }
12 });

The this.base construct works for both constructor and member functions.

The arguments object/map used in this example is a native JavaScript feature.
Inside a function call it contains all the information about how the function was
called: a list of the arguments passed to the function as well as pointers to the
function itself.

class access control
There is the following naming convention for class members.

1 publicMember
2 _protectedMember
3 __privateMember

In the Qooxdoo build process names of private members get mangled to prevent
outside access.

static, abstract and singleton classes
1 qx.Class.define(’my.static.Class’, {
2 type : ’static’
3 statics: { ... };
4 });

Neither members nor constructors are allowed in static classes.
1 qx.Class.define(’my.abstract.Class’, {
2 type : ’abstract’
3 });

Abstract classes must be sub-classed for use.
1 qx.Class.define(’my.singleton.Class’, {
2 type : ’singleton’
3 });
4 var instance = my.singleton.Class.getIntance()

There is only one instance which gets created on the first call.

7

Browser specific code

Normally Qooxdoo takes care of all browser differences, but if you must intervene
. . .

1 members: {
2 foo: qx.core.Environment.select(
3 ’engine.name’, {
4 ’mshtml|opera’: function() {
5 // Internet Explorer or Opera
6 },
7 ’default’: function() {
8 // All other browsers
9 }
10 }
11)
12 }

8

4 Working with Qooxdoo

The demo Browser

1 $ cd $QX/application/demobrowser/
2 $./generate.py build
3 $ gnome-open build/index.html

Or surf to http://demo.qooxdoo.org/current/demobrowser

For me the demobrowser is the quickest way of seeing how to write Qooxdoo.
Select a widget on the tree at the left and activate the JS Code toggle. Now you
can see both the running program as well as the JavaScript code. The rest is mostly
cut and paste.

9

The API Documentation

1 $ cd $QX/framework
2 $./generate.py api
3 $ gnome-open api/index.html

Or surf to http://demo.qooxdoo.org/current/apiviewer

The Qooxdoo API documentation is generated directly from embedded javadoc
in the Qooxdoo JS source files. You can apply the same process to your own
Qooxdoo application to get a api viewer for your own code.

The Qooxdoo generator

Python is the sole dependency

• generator.py is the tool

• it gets called by generate.py

The generator has many functions

• source - prep code for running in souce

• source-hybrid - pre-compiled source version (faster loading)

• build - prep code for deployment

• api - build api doc

• lint - check your code for common errors

• pretty - fix the code layout

• translation - generate locale files

10

Running your Qooxdoo program in source

Use source code during development
1 $ cd hello
2 $./generate.py source-hybrid
3 $ gnome-open source/index.html

As long as you do not use any new classes, press reload in the browser to see
changes.

To run a Qooxdoo application, the code for each class you used must be loaded.
This can easily be 30 or more files. When calling the generator with the option
source it will create an JavaScript file in source/script/hello.js which
takes care of loading these class files. While developing you may want to try the
lint option as well, to catch some frequent mistakes.

Deploying your Qooxdoo program
1 $ cd hello
2 $./generate.py build
3 $ cp -rp build ~/public_html/hello

• only two js files

• code gets optimized and compressed

• no external dependencies

The Qooxdoo generator builds a fully custom js file containing all the Qooxdoo
classes required to run your application. It also compresses and optimizes the
code in this step. You will notice that the first source and build run will take quite
some time. This is because Qooxdoo creates cache files of all classes involved. If
you run the build for a second time things will run much quicker.

11

5 Programming with Qooxdoo

Button, TextField and some Action
1 // Create a textfield
2 var tf1 = new qx.ui.form.TextField(’Demo Text’);
3 // Add button to root
4 root.add(tf1, {column: 0, row: 0});
5 // Create a button
6 var bt1 = new qx.ui.form.Button(
7 ’Open Alert’, ’osd210/test.png’);
8 // Add button to root
9 root.add(bt1, {column: 1, row: 0});
10 // Add an event listener
11 bt1.addListener(’execute’, function(e) {
12 // closure !!
13 this.info(’TextField: ’+tf1.getValue());
14 alert(’TextField: ’ + tf1.getValue());
15 });

Try F7 to see inline console!

In this first example there is already a closure. The variable tf1 is used inside
the event handler. The function is passed as a reference and takes the access to the
TextField object with it.

The Layout Manager

• Qooxdoo Widgets can contain other widgets.

• Layout manager positions child widgets.

• qx.ui.container.Composite basic

• qx.ui.container.Scroll draws scroll bars

• qx.ui.window.Window directs children to an inner composite pane.

• Layout manager set at construction time

• Modified with setLayout method.

12

Container and Layout
1 // a container with horizontal layouyt manager
2 var hbox = new qx.ui.layout.HBox();
3 hbox.setSpacing(4); // set property
4

5 // assign layout
6 var ctr1 = new qx.ui.container.Composite(hbox);
7 ctr1.setWidth(600); ctr1.setHeight(40);
8 // layout properties: position
9 root.add(ctr1,{column: 0, row: 1, colSpan: 2});
10

11 var tf2 = new qx.ui.form.TextField(’Some More Text’);
12 var bt2 = new qx.ui.form.ToggleButton(’AllowGrowY’);
13 bt2.addListener(’changeChecked’, function(e) {
14 // modify widget property
15 tf2.setAllowGrowY(e.getData());
16 this.info(’New Value for AllowGrowY: ’+e.getData());
17 });
18 ctr1.add(tf2);ctr1.add(bt2);

The container widget together with an associated layout object can arrange wid-
gets on screen giving the user high level control over the operation. Here the tog-
gle button lets us choose if the text field should grow vertically to fill the available
space or not.

13

Grid Layout

• qx.ui.layout.Grid

• fully dynamic

• ideal for dialogs

• one widget per cell

• row and column spans

• minimal and maximal column and row sizes

• fixed row and column sizes

The grid widget has all the flexibility of a html table plus a great deal more. It is
the ideal basis for laying out dialog boxes or complex screen setups.

About the Qooxdoo Layout Widgets

• A container widget needs a layout manager to place its children.

• The layout manager object has properties.

• Every widget has basic properties like: alignment, growability, shrinkabil-
ity, stretchability, margins, padding, width and height.

• Each widget can have layout-specific properties.

• Layout properties get checked as the widget is added to a layout.

For me the best way to understand how layouts work was to first try them out in
the demo browser and then use them in a little program of my own.

14

Localized Applications
1 var lmgr = qx.locale.Manager.getInstance();
2 var bt3 = new qx.ui.form.ToggleButton(
3 this.tr(’Translate!’)
4);
5 root.add(bt3, {column: 1, row: 3});
6 bt3.addListener(’changeChecked’, function(e) {
7 var lang = e.getData() ? ’de’ : ’en’;
8 lmgr.setLocale(lang);
9 this.info(’Language set to: ’+lang);
10 });

• add locale to config.json

• ./generate.py translation

• translate de.po

• ./generate.py source

Qooxdoo locale files are normal .po files. You can use any of the existing kde/g-
nome tools for updating your translations. Qooxdoo will automatically pick the
language that best matches the locale settings in your browser.

Calling code on the Server

• JSON RPC for transport

• various language bindings http://qooxdoo.org/contrib/project\
#backend

• often minimal server code

• async with callbacks

• qx.io.Rpc

15

Organizing the code into multiple classes

• Object orientation “by the book”.

• One file per class.

• Java’s file name based approach.

• Supported by the generator.

• Ideal for code re-use.

• Use Inline Docs!

• ./generate.py api

The textclick class
1 /**
2 * textclick combines a textfield and a button.
3 */
4 qx.Class.define("fisl12.ui.textclick",
5 {
6 extend : qx.ui.container.Composite,
7 /**
8 * @param button_text {String} button text.
9 */
10 construct : function(button_text) {
11 this.base(arguments,
12 new qx.ui.layout.HBox().set({spacing: 4})
13);
14 this.__tf = new qx.ui.form.TextField();
15 this.__bt = new qx.ui.form.Button(button_text);
16 this.add(this.__tf);
17 this.add(this.__bt);
18 },
19

20

21 members :
22 {
23 /**
24 * Get a handle to the Button widget.
25 */
26 getButton: function() { return this.__bt },
27 /**
28 * Get a handle to the TextField widget.
29 */
30 getTextField: function() { return this.__tf },
31 __bt: null,
32 __tf: null
33 }
34 });

16

Using the textclick class
1 var mywi =new osd210.ui.textclick(
2 this.tr(’Copy Text from Example 1’));
3

4 mywi.getButton().addListener(’execute’, function(e) {
5 mywi.getTextField().setValue(tf1.getValue());
6 this.info(’Set textfield to ’+tf1.getValue());
7 });
8

9 root.add(mywi,{column: 0, row: 5, colSpan: 2});

By splitting your application into different classes, your code becomes simpler to
understand and to test, you can even re-use it in other projects.

The generator tool will merge your own classes with the relevant Qooxdoo Classes
into optimized, monolithic JavaScript files, ready for deployment.

Tobias Oetiker <tobi@oetiker.ch>

17

