
TemplateTree II: The
Post-Installation Setup Tool

Tobias Oetiker – ISG.EE, Swiss Federal Institute of Technology

ABSTRACT

After installing an OS distribution, a computer is generally not yet properly adapted to go
into production at the local site. Security policies must be implemented, local services configured,
and standard application settings deployed. Solutions to this problem range from unpacking a tar
archive in the root directory to sophisticated tools like Cfengine [3].

This paper presents TemplateTree II, a highly modular approach for solving the post-
installation problem which uses Cfengine as a transport mechanism.

Introduction

System management of an IT-infrastructure with
more than just a few machines, requires an overall
management concept and a lot of automation to pre-
serve the sanity of all involved. This has been dis-
cussed at length, for example, in the Infrastructure
Paper [1] by Traugott and Huddelston and and also a
few years back by Rémy Evard at LISA 1997 [2].

One of the problems to tackle is the post installa-
tion procedure of freshly installed machines as well as
feeding and care once they are in operation. This
paper presents a modular solution to this problem.
Another related problem is software distribution
which is not covered in this paper (see [8] for our
solution to this problem).

The Problem

Integrating a machine into the local environment
requires that configuration files are replaced with cus-
tomized versions for the local site, or even that whole
new software is added to the machine. Files like
/etc/services, /etc/inetd.conf, and /etc/mail/sendmail.cf
come to mind, but also third party packages like AFS
(Andrew File System), SSH (Secure Shell) or Postfix.

In principle this problem is quite easy to solve:
Setup some sort of Master Server which holds a copy
of all the changes you want to apply to a client and let
the client update itself by copying all the changes from
the Master Server. The Infrastructure Paper calls this
machine the ‘Gold Server.’ Manage the material on
the Master Server using CVS and you even have
reproducibility and accountability.

Unfortunately, most often not all the clients are
the same, so there must be a method to define what
material from the Master Server should go to each
client. A simple approach taken by many, is to write a
special customization script which is run on each
machine and figures out what should be done depend-
ing on information it gleans from the machine at run-
time.

One tool which takes this approach to a new
level is Mark Burgess’ Cfengine [3]. Essentially it
provides a highly specialized language for describing
machine configurations, so instead of writing cus-
tomization scripts in Perl or bash it is now possible to
write them in a language created for this very purpose.
I am comparing TemplateTree II mostly with Cfengine
because it is the most widely used tool in this area.

At first we thought that Cfengine would solve all
our problems, but unfortunately we found three main
areas where it did not fit our requirements:
Modularity and meta configuration: Because our

setup is quite diverse with many different con-
figurations we wanted a system where we can
build configurations based on individual com-
ponents. Each component would expose certain
configurable parameters which allow to tune
the component to the setup it is going to be
used in. One could talk about an additional
abstraction layer. Cfengine has no concept for
modularization apart from its ability to use
include files. The include files can not define a
configuration interface for themselves.

Documentation: The best system can be difficult to
understand if no documentation goes along
with it explaining the reasoning behind the less
obvious configuration decisions. All you get in
Cfengine configuration files are embedded
comments.

Disk-less client support: We use disk-less clients
whenever possible. Because all client filesys-
tems are stored on the server we can update
them even when the client is not running.
Cfengine has been designed for running locally,
this means that writing a Cfengine configura-
tion file for our setup is more complex than
necessary. Especially, there is no support to
change the ‘root’ directory within a Cfengine
configuration file.

Despite the missing features we found Cfengine
to be a great tool for the task of actually doing the nec-
essary modifications on the target machines. It can

2001 LISA XV – December 2-7, 2001 – San Diego, CA 169

TemplateTree II: The Post-Installation Setup Tool Oetiker

serve both as a network transport and as an all dancing
and singing file handling tool. We decided to imple-
ment a configuration system on top of Cfengine which
outputs Cfengine configuration files. This allows us to
use Cfengine as a back-end system without having the
problems outlined above.

Concept of a Solution

TemplateTree II addresses all the problems men-
tioned above. It provides a post-install host configura-
tion system based on Feature-Packs.

Modularity Through Feature-Packs

Modifying a freshly installed machine to fit the
local requirements normally consist of several loosely
coupled tasks. These tasks are, for example: linking
the machine into the local user authentication system,
configuring the machines mail transfer agent, adding
the latest OpenSSH distribution and turning off unnec-
essary services. In the context of TemplateTree II
these independent tasks are called Feature-Packs.

Feature-Packs are self-contained in the sense that
you can mix and match Feature-Packs from a central
repository. Several system management domains1

could share a single repository. This is similar to the
independent packages approach chosen for the SEPP
software distribution System [8] or the Classes of
Synctree [4] or even Cfengine configuration include
files.

Splitting Configuration and Code

The modifications necessary to make a machine
fit into the local setup may be similar across many
machines. Nevertheless, some differences between
machines will exist. If a single Feature-Pack should be
able to cater for all these situations it must itself
expose a configuration interface. For a mail server you
want to be able to set the local mail domain, for an
automounter setup the automount maps may differ
between departments. In publishing, one of the hot
topics is separating content from design [9]. In Tem-
plateTree II we might call it separation of configura-
tion from code.

Obviously this is not new. Most software pack-
ages support some sort of configuration file and you
do not have to recompile emacs to change the size of a
font. Therefore, in our case we might talk about a uni-
fied configuration level which sits above the normal
application configuration files.

1A system management domain is a a set of machines man-
aged by a single system management group. This can be a
single server with a few clients or a complex setup with
many servers and clients. Size does not and should not mat-
ter from a technical point of view. TemplateTree II will fit
both. What we have here is more a political and organiza-
tional question. I avoided to use the word infrastructure, be-
cause its definition of encompassing all machines of a whole
organization is not really appropriate in our institution with
thousands of machines and many independent system man-
agement groups.

Te m p l a t e Tree II implements such a meta configu-
ration level. This has two advantages: First, a single
Feature-Pack can be deployed across many different
machines in various configurations. Second, the relevant
meta configuration information is kept separate from the
Feature-Packs and is therefore more manageable.

Collaboration
With TemplateTree II it is possible to maintain a

central repository of Feature-Packs. A group of system
managers can work together keeping them up to date.
Each maintains a number of Feature-Packs in the cen-
tral store, specializing in some areas. When it comes
to defining what Feature-Packs to use in a certain sys-
tem management domain, each of the participating
managers has his full freedom, as to which Feature-
Packs he wants to use and how he wants to configure
them. This potential for collaboration is quite similar
to SEPP [8].

Centralized Management
Having a way to easily customize machines is

not enough. We also need to manage the configuration
information in an efficient way. We wanted an effi-
cient method for writing a single configuration file per
management domain. A single configuration file for
all machines is more efficient to maintain and has less
redundancy than a system with large amounts of con-
figuration data. Configuration files of other tools in
the same problem space like Cfengine [3] tackle this
problem by implementing whole scripting languages
in their own right. In the case of Ressmans paper from
LISA 2000 a SQL database [10] is holding all the nec-
essary information. For TemplateTree II we chose a
configuration file centering on which Feature-Packs to
apply to which group of machines and how to config-
ure the Feature-Packs. This gives us all the configura-
tion freedom we need while still being quite simple
because the complexity is locked away into the Fea-
ture-Packs, while the configuration information
remains in the central configuration file.

Documentation
System management concepts and tools differ

largely from site to site, so there is no official book for
folks to read in order to get up to speed on working in
our environment. To make sure the documentation
gets written and updated as part of our daily routine,
we tightly integrate facilities for documentation into
all our system management tools (see [8]).

Being able to turn a machine from ‘‘freshly
installed’’ into ‘‘useful workstation or server’’ in a
short time, is nice. But this is only half the bill when
either something fails or when several people work
together on the task. The other half is having good
documentation regarding the changes done to a
machine. Not only do we want to know what has been
changed but also why it has been done. TemplateTree
II defines a mandatory documentation standard for all
Feature-Packs. TemplateTree II integrates the docu-
mentation into the Feature-Pack itself. Following the

170 2001 LISA XV – December 2-7, 2001 – San Diego, CA

Oetiker TemplateTree II: The Post-Installation Setup Tool

ideas of literate programming [6], it is possible to

...

Feature Repository

sendmail conf

ssh feature

inetd cleaner

cfengine.confhost.list

site.desc

system.conf

(one per management domain)

tetre2 tool

files
external hosts

Figure 1: The components of TemplateTree II.

automatically create a big POD2 file, documenting all
the Feature-Packs. This means that when you want to
use a Feature-Pack you will get full documentation
about what the Feature-Pack does, how you can use it,
and any special points to observe when applying it to
your setup.
Disk-Less Clients or ‘‘No Magic Please!’’

A major feature of Cfengine is, that you can
write configuration files which react to the setup and
current state of the local machine. In his Computer
Immunology paper [5] Burgess uses this facility to
illustrate how a self healing mechanism for computers
could be implemented. Our setup contains many disk-
less clients where we build the client filesystem on the
server even before the client boots for the first time.
This means TemplateTree II must be able to run with-
out access to the machine it is customizing. Therefore
all the information it needs is available in its configu-
ration files.

Cfengine provides facilities for monitoring
machines and even for reacting to certain problems.
The scope of TemplateTree II is more focused.3 Its
only purpose is to modify the configuration of a
machine to make it fit the local requirements. This
task is completely controllable. No evaluation of the
status of a certain machine is necessary in order for
TemplateTree II to do its work. We know what
machines we have and how they are configured.

If some configuration must be done locally and
while the client is running, there is always the option
of applying a specialized boot script to the client or to
add an appropriate cron-job.

2POD is a very simple documentation format widely used
in the Perl community. It can be converted into Man,
HTML, LaTeX, and other formats. We use it for most of our
technical documentation (see [12]).
3Monitoring the health of the system is left to a specialized

tool in this area (Gossips [11]). Note that using Template-
Tree II does not prevent you from using cfengine as an im-
munological agent. It only means that TemplateTree II will
not make use of these aspects of cfengine.

Getting the Modifications to the Client
TemplateTree II uses Cfengine as a transport

mechanism for moving and applying files to the target
machine. We decided to use Cfengine because it pro-
vides all the file tackling equipment required for what
we intend to do in one simple binary. It also allows us
to use all the neat features of Cfengine like the
Cfengine daemon or its ability to only copy those files
which have changed or to do a dry-run in order to test
a new configuration.

TemplateTree II outputs a single Cfengine con-
figuration file per management domain. This configu-
ration file contains all the information necessary for
configuring each individual machine, as well as the
root directories of the disk-less clients.

Architecture

Figure 1 shows the main components of Tem-
plateTree II. The configuration is stored in three main
configuration files:
system.conf defines where TemplateTree II should

look for other components of the system, which
operating systems your installation supports,
and which attributes must be known for each
host managed by the system. The system con-
figuration does not have to be changed under
normal circumstances and is therefore kept in
its own file.

site.desc contains structured information about how
hosts should be arranged into groups, which
Feature-Packs should be installed on which
group of hosts, and how each feature should be
configured.

host.list holds a simple table with a set of basic
attributes for each host. The Feature-Packs can
draw upon this information in addition to spe-
cific ‘per pack’ configuration parameters.

The actual files which have to be applied are
stored in a repository of Feature-Packs. A Feature-
Pack is a directory containing all the files which must
be applied plus a file called META which describes
how to apply the files.

2001 LISA XV – December 2-7, 2001 – San Diego, CA 171

TemplateTree II: The Post-Installation Setup Tool Oetiker

Based on the configuration files and information
taken from the selected Feature-Packs, the tetre2 util-
ity builds a cfengine.conf file.4 The Cfengine configu-
ration will contain references to files from the Feature-
Packs repository if whole new files must be copied as
part of the post-installation process. Apart from this,
the generated Cfengine configuration will not depend
on TemplateTree II anymore. Together with the
Cfengine daemon it is possible to update the files on
any machine regardless whether it shares a common
filesystem with the machine where TemplateTree II is
installed or not. It only needs the Cfengine binary to
work and network access to the Cfengine daemon.

For large changeable files like /etc/hosts a spe-
cial facility is provided to keep these files separate
from the Feature-Packs. A Feature-Pack can in fact
define that it wants to use such a file. TemplateTree II
will then make sure that this file is provided.

Using TemplateTree II

Configuration Splitting
Probably the most complex task when starting to

use TemplateTree II is to split your setup into a set of
Feature-Packs. The goal is to devise a scheme which
allows to use different combinations of your Feature-
Packs to cater for all the special needs at your site.

Our approach is to use four different types of
Feature-Packs:
Application: This is for essential applications like

OpenSSH or Xinetd which are not part of the
basic OS distribution, but which we think
should be.

OS: Here we collect all the OS dependent changes
we apply to every machine if it runs a certain
OS release.

Domain: All machines within the same authentica-
tion domain usually share some files and con-
figurations.

Machine: And finally there are always some bits
and pieces of configuration which are special to
an individual machine. For these we create
individual, machine dependent, Feature-Packs.

The site.desc configuration file then defines
which combination of Feature-Packs has to be applied
to each machine.

Anatomy of a Feature-Pack
A Feature-Pack is a directory containing all the

files necessary to implement a certain functionality or
behavior on the target machine. For an OpenSSH Fea-
ture-Pack this would be all the binaries for all the
architectures the Feature-Pack is going to support, a
startup script, and configuration files defining the site
policy.

4The architecture of the tetre2 application allows to quite
easily add other output formats apart from Cfengine config-
uration files like shell scripts, for example. TemplateTree II
already has the ability to output POD documentation on all
the Feature-Packs available in the current repository.

:
+- features
| |
| +- sendmail_config-1.0-to
: | +- META

| +- sendmail.cf-client
| +- sendmail.cf-server
|
+- openssh-2.9.4-to
: +- META

+- ...

Figure 2: A Sample Feature-Pack repository.

In addition to this free-form collection of files
every Feature-Pack must contain a file called META.
It describes the content of the Feature-Pack and con-
tains all the instructions required to apply the Feature-
Pack to a machine. Figure 2 shows the directory lay-
out of a Feature-Pack repository. The META file
offers six ways to expose configurable items from the
Feature-Pack:
File Sets: The content of a Feature-Pack can be split

into blocks. Each block must have a distinct
name. In TemplateTree II such a block is called
File Set. When applying a feature which uses
File Sets, the administrator can choose which
File Set to apply to which Machine.

Operating System: Template Tree knows for each
machine it manages, which OS is running on
that machine. A Feature-Pack can be config-
ured to install different files depending on the
release and type of OS it is running on.

Substitutes: Some files are the same for all
machines except for one word, which has to be
changed according to, e.g., the name of the
default printer or the mail domain. A Feature-
Pack can expose several named parameters
which can be configured when using the Pack-
age.

Automatic Substitutes: The host.list file contains a
number of key parameters for each machine. A
Feature-Pack can access these parameters as
search and replace data on files it contains.

Magic Substitutes: The value of a Substitute can be
subjected to some perl manipulation prior to
being used in a search and replace operation.

External Files: A package can ‘‘contain’’ external
files. The Feature-Package only knows how to
apply these external files to the target machine.
The name and location of these files is config-
urable in the site.desc file when using the Fea-
ture-Pack.

The next page shows a sample META file. It
shows how to use the functions listed above in con-
text.

The *** Action *** section of this META
file is very boring as it only contains copy instruc-
tions. TemplateTree II supports a number of other
actions for creating directories, removing files and
directories, generating symbolic links and, finally, a
special function for assembling files.

172 2001 LISA XV – December 2-7, 2001 – San Diego, CA

Oetiker TemplateTree II: The Post-Installation Setup Tool

*** Name ***
Sendmail Config Package

*** Version ***
1.0

*** Maintainer ***
Tobias Oetiker <oetiker@ee.ethz.ch>

*** One Line Description ***
Configure Sendmail to work properly

*** Blurb ***
This package can configure sendmail as either a normal mail server or
as a null client simply feeding mail to a central mail server.

*** Usage Info ***
This package assumes that the stock sendmail version for your OS is
already installed. It does not contain any binaries, just an
appropriate configuration file.

*** File Sets ***
client A configuration for a forward only client
server The works, a full blown server with built-in jacuzzi

*** Change Log ***
2000/07/02 to Demo package created
2000/08/10 to Added change log

*** OS Support ***
sol26
sol8
rhl62

*** Substitutes ***
mdomain Name of the local mail domain.
mserver Host Name of our mail relay

*** External Files ***
aliases Your site’s alias file

*** Action ***

the server gets an alias file. Which physical file
gets copied to the server can be configured when setting
up the Feature-Pack in the site.desc file.

server:.*:
C aliases /etc/mail/aliases 644 root:root

solaris mail servers get to use the file sendmail.sol.server as
their sendmail.cf file. While copying the file to the server,
cfengine will do a search/replace operation for >#>mdomain<#<
and >#>mserver<#< according to the setup in the site.desc file

server:sol.*:
C sm.sol.srv /etc/mail/sendmail.cf 644 root:root mdomain,mserver

the same happens for RedHat mailservers except that there is a
different sendmail cf file.

server:rhl.*:
C sm.rhl.srv /etc/mail/sendmail.cf 644 root:root mdomain,mserver

for null clients we do not need a os sepcific sendmail.cf file, so
the OS part of the file selector is set to a globally matching
regular expression.

client:.*:
C sm.clnt /etc/mail/sendmail.cf 644 root:root mdomain,mserver

Listing 1: A sample META file.

2001 LISA XV – December 2-7, 2001 – San Diego, CA 173

TemplateTree II: The Post-Installation Setup Tool Oetiker

The assemble function allows for different Fea-
ture-Packs to each provide part of a file which then
gets assembled on the target machine. This can be
used to configure /etc/system on a Solaris system
where some Feature-Pack might want to add a special
driver load instruction whereas on other machines
there is just the usual shared memory and stack protec-
tion configuration in there. Another usage would be
the root crontab file or the inetd.conf where several
Feature-Packs contribute to the contents of the file.

The Host List (host.list)

The most simple configuration file in a Tem-
plateTree II setup is the host.list file which contains a
simple table with all the hosts of the site. It is shown
in Listing 2. The third row in the sample above is for
the disk-less machine called bluehat which uses disk-
space on the server drwho. Some of the columns in the
table like the host name and the OS are required by
TemplateTree II, others are configurable through the
system.conf file.

HOST IP ROOT OS DOMAIN
#--
tardis 192.168.1.2 / Sol8 ee.ethz.ch
drwho 192.168.2.44 / Sol7 ee.ethz.ch
bluehat 192.168.2.12 drwho:/export/root/bluehat Sol7 ee.ethz.ch
...

Listing 2: Table of hosts: host.list file .

The System Configuration (system.conf)

At the root of the TemplateTree II configuration
setup is the system.conf file. It defines where the other
components of the system are stored, what OSes are
handled and which columns must be listed in the
host.list file.
*** Locations ***
SiteDesc = /etc/tetre2/site.desc
HostList = /etc/tetre2/host.list
Features = /etc/tetre2/features
ExternalFiles = /etc/tetre2/extfiles
ConfServer = jobis.ee.ethz.ch
RunTimeVar = /var/cfengine

*** Operating Systems ***
sol26 Sun Solaris 2.6 Sparc
sol7 Sun Solaris 7 Sparc
sol8 Sun Solaris 8 Sparc
rhl62 RedHat Linux 6.2 x86
irix63 SGI Irix 6.3 MIPS

*** Host List Config ***
HOST Hostname
IP IP Address
ETHER ETHERNET Address
DEF_GW Default Gateway
DOMAIN DNS Domain of the Host
OS OS of the machine
ROOT Where is the ROOT of this machine

*** Host List Tests ***
DOMAIN sub {return \

"We only manage ethz domains" \
unless $Match =˜ /ethz/; 0 }

The Site Description (site.desc)
With all the other parts of the system in place it

is now possible to setup the Site configuration file
defining which Feature-Pack should be installed on
which machine and how it should be configured in the
process. The site.desc file has three main sections:
Feature Selection: This allows to create instances

of Feature-Packs. Each instance can contain
several cases. A case lends its name to a group
of configurable parameters. When applying a
Feature-Pack these parameters can be activated
by using the name of a case.

Host Grouping: Most hosts at a site share some
common configuration. So instead of configur-
ing each host individually you can build groups
of hosts and then apply the Feature-Pack
instances to the groups.

Feature Application: In the final section of the
site.desc file the feature instances are applied to
individual hosts or whole groups of hosts as
defined in the previous section.

Below is a tiny Site Description sample file for illus-
tration:
*** Feature Selection ***
#------------------------------------
SENDMAIL := sendmail_conf-1.0-to
#------------------------------------

default values
mdomain = "ee.ethz.ch"
mserver = "smtp.ee.ethz.ch"
aliases -> "aliases/ee"

case ’mailserver’ uses
the file-set ’server’
mailserver:

/server

case ’nullclient’ uses
the file-set ’client’
nullclient:

/client

*** Host Groups ***

null = drwho bluehat

*** Host Features ***

tardis: SENDMAIL(mailserver)
@null: SENDMAIL(nullclient)

Security Considerations

If a whole site is setup and configured using a
centralized approach such as TemplateTree II the
potential problems which arise are similar to those you
get when all your fields carry the same crop. First, a

174 2001 LISA XV – December 2-7, 2001 – San Diego, CA

Oetiker TemplateTree II: The Post-Installation Setup Tool

security problem present on one host is likely to be
present on all and second, if your central configuration
machine gets compromised and the intruders modify
the TemplateTree II setup then the malicious code
could get distributed easily to all managed machines.

We counter this by two measures: First, we keep
the whole TemplateTree II setup in CVS which allows
us to backtrack configuration problems we introduce
ourself and, second, we protect the central Template-
Tree II configuration server by only allowing access
via secure channels. Further, the whole system gets
backed up regularly and is trip-wired for easy detec-
tion of unauthorized modifications. We have also been
thinking about using digital signatures on Feature-
Packs but have not yet implemented such a functional-
ity.

Conclusion

By building on top of Cfengine a system has
been devised that allows for the complete modulariza-
tion of the post install process of Unix workstations.
TemplateTree II allows us to perform fully customized
machine setups in a very short time while maintaining
full reproducibility. Because TemplateTree II works
with a single top level configuration file the configura-
tion information for the whole site is readily accessi-
ble and when changes are required, they can be
quickly performed on all systems.

Future Work

At the moment we are happy with TemplateTree
II and use it as it stands. We do have some ideas,
though. One would be to improve the Cfengine con-
figuration generator to create more compact Cfengine
configuration code. Currently the Cfengine configura-
tion is about as voluminous as it can get. Smaller code
would be simpler to understand and debug than the
bulk we have today.

An entirely different road would be to replace
Cfengine altogether and use a modified rsync server
which provides a view on a virtual file system which
changes its contents dynamically depending on the
host which is sending the request. This approach
would allow us to capitalize on the excellent perfor-
mance and security possible with rsync/ssh.

About the Author

Tobias Oetiker is a Senior System Manager with
the IT Support Group of the Department of Informa-
tion Technology and Electrical Engineering at the
Swiss Federal Institute of Technology in Zurich. He is
an electrical engineer by education and a system man-
ager by vocation. His main area of interest is currently
scalable system management concepts and their
implementation. In his spare time Tobi likes to read,
go to movies, and work on his Free (as in GNU) soft-
ware projects.

Acknowledgments

I would like to thank the following individuals
for helping me with this paper: Paul Anderson, David
Schweikert, Jon Stearley, and Fritz Zaucker. If you
find anything especially well written or spelled prop-
erly, it must have been one of their suggestions.

Availability

TemplateTree II is written in Perl and available
under GNU GPL from http://isg.ee.ethz.ch/tools/ .

References

[1] Steve Traugott, Joel Huddleston, ‘‘Bootstrapping
an Infrastructure,’’ http://www.infrastructures.
org, LISA, 1998.

[2] Evard, Rémy, ‘‘An Analysis of UNIX System
Configuration,’’ LISA, 1997.

[3] Burgess, Mark, ‘‘Cfengine: A Site Configuration
Engine,’’ USENIX Computing Systems, Vol. 8,
No. 3, http://www.iu.hioslo.no/cfengine, 1995.

[4] Lockard, John, Jason Larke, ‘‘Synctree for Sin-
gle Point Installation, Upgrades, and OS
Patches,’’ LISA 1998.

[5] Burgess, Mark, ‘‘Computer Immunology,’’ LISA
1998.

[6] Donald E. Knuth, The CWEB System of Struc-
tured Documentation, Addison-Wesley, 1993.

[7] Weisshaus, Melissa, et al., GNU tar: An Archiver
Tool, http://www.gnu.org/manual/tar/ .

[8] Oetiker, Tobias, ‘‘SEPP – Software Sharing and
Packaging System,’’ http://www.sepp.ee.ethz.ch/,
LISA 1998.

[9] Lamport, Leslie, ‘‘LaTeX: A Document Prepara-
tion System, User’s Guide and Reference man-
ual,’’ Addison-Wesley.

[10] Ressmann, David & John Valdés, ‘‘Use of
Cfengine for Automated, Multi-Platform Soft-
ware and Patch Distribution,’’ LISA, 2000.

[11] Goetsch, Victor, Albert Wuersch, Tobias Oetiker,
Gossips: The Systems and Services Monitor, http://
isg.ee.ethz.ch/tools .

[12] Wall, Larry, Tom Christiansen, ‘‘Perl POD: Plain
Old Documentation,’’ http://www.cpan.org/doc/
manual/html/pod/perlpod.html .

2001 LISA XV – December 2-7, 2001 – San Diego, CA 175

176 2001 LISA XV – December 2-7, 2001 – San Diego, CA

